Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 853411, 2022.
Article in English | MEDLINE | ID: mdl-35992702

ABSTRACT

Although biological nitrogen fixation (BNF) proceeds under mild conditions compared to the energy-intensive Haber-Bosch process, the slow kinetics of BNF necessitate the promotion of BNF activity in its practical application. The BNF promotion using purified nitrogenases and using genetically modified microorganisms has been studied, but these enzymes are unstable and expensive; moreover, designing genetically modified microorganisms is also a difficult task. Alternatively, the BNF promotion in non-modified (wild-type) microorganisms (enriched consortia) with humin has been shown, which is a humic substance insoluble at any pH and functions as an extracellular electron mediator. However, the taxonomic distribution of the diazotrophs promoted by humin, the levels of BNF promotion, and the underlying mechanism in BNF promotion with humin remain unknown. In this study, we show that taxonomically diverse heterotrophic diazotrophs, harboring nifH clusters I, II, and III, promoted their BNF by accepting extracellular electrons from humin, based on the characterization of the individual responses of isolated diazotrophs to humin. The reduced humin increased the acetylene reduction activity of the diazotrophs by 194-916% compared to the level achieved by the organic carbon source, causing adenosine triphosphate (ATP) synthesis in the diazotroph cells without increase in the CO2 production and direct electron donation to the MoFe protein of the nitrogenase in the cells without relying on the biological electron transfer system. These would result in BNF promotion in the wild-type diazotroph cells beyond their biochemical capacity. This significant promotion of BNF with humin would serve as a potential basis for sustainable technology for greener nitrogen fixation.

2.
J Biosci Bioeng ; 134(2): 144-152, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644797

ABSTRACT

Dark fermentative biological hydrogen (Bio-H2) production is expected to be a clean and sustainable H2 production technology, and the technologies have been studied to increase in the product yield as index. This study achieved high product yields of Bio-H2 using nitrogen-fixing consortia under nitrogen-deficient conditions with glucose or mannitol as substrate and humin as the extracellular electron mediator: 4.12 mol-H2/mol-glucose and 3.12 mol-H2/mol-mannitol. The high Bio-H2 production was observed under the conditions where both nitrogenase and hydrogenase were active in the presence of humin. Nitrogenase activity was confirmed by acetylene reduction activity and hydrogenase activity by Bio-H2 production under nitrogenase-inhibiting conditions with NH4NO3. [Fe-Fe] hydrogenase detected by a specific PCR and acetate, butyrate, formate, lactate, and pyruvate produced as by-products suggested the involvement of both pyruvate-ferredoxin-oxidoreductase and pyruvate formate lyase pathways in Bio-H2 production. Humin promoted the Bio-H2 production beyond the capacity of the consortium, which had reached saturation with the optimum concentrations of glucose and mannitol. Carbon balance suggested the concurrent H2 consumption by hydrogenotrophic methanogenesis and acetogenesis. Bio-H2 production of the washed and starved consortium with reduced humin under conditions with or without NH4NO3 suggests that humin promoted hydrogenase and nitrogenase activity by donating extracellular electrons. Clostridium and Ruminococcus in the consortia were considered major hydrogen producers. Thus, this study demonstrated the outstanding potential of nitrogen-fixing consortia under nitrogen-deficient conditions with humin as an extracellular electron mediator for dark fermentative Bio-H2 production with high yields.


Subject(s)
Hydrogenase , Anaerobiosis , Formates , Glucose , Humic Substances , Hydrogen/metabolism , Hydrogenase/metabolism , Mannitol , Microbial Consortia , Nitrogen/metabolism , Nitrogenase/metabolism , Pyruvates
3.
Glycoconj J ; 39(2): 261-290, 2022 04.
Article in English | MEDLINE | ID: mdl-35037163

ABSTRACT

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Esters/pharmacology , Galactose , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , SARS-CoV-2
4.
Int J Biol Macromol ; 195: 1-11, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34871655

ABSTRACT

Extracellular electron transfer material (EETM) has increasingly attracted attentions for the enhancing effect on multiple microbial reactions. Especially, EETM is known to be essential to activate the energy network in non-electroactive bacteria. It is motivated to find out an EETM which is natural-based, environmentally friendly, and easily produced at large-scale. In this study, Bombyx mori silk is found, for the first time, to function as an EETM by using an EETM-dependent pentachlorophenol (PCP) dechlorinating anaerobic microbial culture. Subsequently, by dividing fibroin fiber into different soluble/insoluble fractions and correlating their EET functions with their structural properties based on various spectroscopic analyses, the ß-sheet configuration is suggested as an essential structure supporting the EET function of silk materials. The analyses also suggested the involvement of sulfur-containing amino acids in this function. The EET function is not degraded by boiling or acid/alkaline treatments and the material can be utilized multiple times, although it is susceptible to UV irradiation. Bombyx mori silk also enhance other microbial reactions, including Fe(III)OOH reduction, CO2 reduction to acetate, and nitrogen fixation. This discovery provides a basis for developing biotechnology for environmental remediation, global warming reduction, and biofertilizer production using Bombyx mori silk and its wastes.


Subject(s)
Bacteria/growth & development , Bombyx/chemistry , Fibroins/chemistry , Pentachlorophenol/pharmacology , Sericins/chemistry , Anaerobiosis , Animals , Bacteria/metabolism , Carbon Dioxide/chemistry , Halogenation , Molecular Structure , Protein Conformation, beta-Strand , Textile Industry
5.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834107

ABSTRACT

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Galactose/analogs & derivatives , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacokinetics , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Galactose/chemistry , Galactose/pharmacokinetics , Galactose/pharmacology , Gram-Positive Bacteria/drug effects , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , Static Electricity , Thermodynamics , COVID-19 Drug Treatment
6.
In Silico Pharmacol ; 9(1): 42, 2021.
Article in English | MEDLINE | ID: mdl-34295612

ABSTRACT

Nucleoside analogs contribute in pharmaceutical and clinical fields as medicinal agents and approved drugs. This work focused to investigate the antimicrobial, anticancer activities, and structure-activity relationship (SAR) of cytidine and its analogs with computational studies. Microdilution was used to determine the antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the modified analogs against human and phytopathogenic strains. Compounds (7), (10), and (14) were the most potent against Escherichia coli and Salmonella abony strains with MIC and MBC values from 0.316 ± 0.02 to 2.50 ± 0.03 and 0.625 ± 0.04 to 5.01 ± 0.06 mg/ml, respectively. The highest inhibitory activity was observed against gram-positive bacteria. Numerous analogs (10), (13), (14), and (15) exhibited good activity against the tested fungi Aspergillus niger and Aspergillus flavus. Anticancer activity of the cytidine analogs was examined through MTT colorimetric assay against Ehrlich's ascites carcinoma (EAC) tumor cells whereas compound 6 showed the maximum antiproliferative activity with an IC50 value of 1168.97 µg/ml. To rationalize this observation, their quantum mechanical and molecular docking studies have been performed against urate oxidase of A. flavus 1R51 to investigate the binding mode, binding affinity, and non-bonding interactions. It was observed that most of the analogs exhibited better binding properties than the parent drug. In silico ADMET prediction was attained to evaluate the drug-likeness properties that revealed the improved pharmacokinetic profile with lower acute oral toxicity of cytidine analogs. Based on the in vitro and in silico analysis, this exploration can be useful to develop promising cytidine-based antimicrobial drug(s). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00102-0.

7.
Sci Rep ; 11(1): 6567, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753787

ABSTRACT

Nitrogen fertiliser is manufactured using the industrial Haber-Bosch process, although it is extremely energy-consuming. One sustainable alternative technology is the electrochemical promotion of biological nitrogen fixation (BNF). This study reports the promotion of BNF activity of anaerobic microbial consortia by humin, a solid-phase humic substance, at any pH, functioning as an extracellular electron mediator, to levels of 5.7-11.8 times under nitrogen-deficient conditions. This was evidenced by increased acetylene reduction activity and total nitrogen content of the consortia. Various humins from different origins promoted anaerobic BNF activity, although the degree of promotion differed. The promotion effected by humin differed from the effects of chemical reducing agents and the effects of supplemental micronutrients and vitamins. The promotion of anaerobic BNF activity by only reduced humin without any other electron donor suggested that humin did not serve as organic carbon source but as extracellular electron mediator, for electron donation to the nitrogen-fixing microorganisms. The next generation sequencing (NGS) of partial 16S rRNA genes showed the predominance of Clostridiales (Firmicutes) in the consortia. These findings suggest the effectiveness of humin as a solid-phase extracellular electron mediator for the promotion of anaerobic BNF activity, potentially to serve for the basis for a sustainable technology.

8.
Front Microbiol ; 11: 2097, 2020.
Article in English | MEDLINE | ID: mdl-32983064

ABSTRACT

Bacteria producing hydrolytic exoenzymes are of great importance considering their contribution to the host metabolism as well as for their various applications in industrial bioprocesses. In this work hydrolytic capacity of bacteria isolated from the gastrointestinal tract of Bombay duck (Harpadon nehereus) was analyzed and the enzyme-producing bacteria were genetically characterized. A total of twenty gut-associated bacteria, classified into seventeen different species, were isolated and screened for the production of protease, lipase, pectinase, cellulase and amylase enzymes. It was found that thirteen of the isolates could produce at least one of these hydrolytic enzymes among which protease was the most common enzyme detected in ten isolates; lipase in nine, pectinase in four, and cellulase and amylase in one isolate each. This enzymatic array strongly correlated to the previously reported eating behavior of Bombay duck. 16S rRNA gene sequence-based taxonomic classification of the enzyme-producing isolates revealed that the thirteen isolates were grouped into three different classes of bacteria consisting of eight different genera. Staphylococcus, representing ∼46% of the isolates, was the most dominant genus. Measurement of enzyme-production via agar diffusion technique revealed that one of the isolates which belonged to the genus Exiguobacterium, secreted the highest amount of lipolytic and pectinolytic enzymes, whereas a Staphylococcus species produced highest proteolytic activity. The Exiguobacterium sp. expressing a maximum of four hydrolases, appeared to be the most promising isolate of all.

9.
Enzyme Res ; 2018: 3859752, 2018.
Article in English | MEDLINE | ID: mdl-29755785

ABSTRACT

Pectinase is one of the important enzymes of industrial sectors. Presently, most of the pectinases are of plant origin but there are only a few reports on bacterial pectinases. The aim of the present study was to isolate a novel and potential pectinase producing bacterium as well as optimization of its various parameters for maximum enzyme production. A total of forty bacterial isolates were isolated from vegetable dump waste soil using standard plate count methods. Primary screening was done by hydrolysis of pectin. Pectinase activity was determined by measuring the increase in reducing sugar formed by the enzymatic hydrolysis of pectin. Among the bacterial isolates, the isolate K6 exhibited higher pectinase activity in broth medium and was selected for further studies. The selected bacterial isolate K6 was identified as Chryseobacterium indologenes strain SD. The isolate was found to produce maximum pectinase at 37°C with pH 7.5 upon incubation for 72 hours, while cultured in production medium containing citrus pectin and yeast extract as C and N sources, respectively. During enzyme-substrate reaction phase, the enzyme exhibited its best activity at pH of 8.0 and temperature of 40°C using citrus pectin as substrate. The pectinase of the isolate showed potentiality on different types of fruit juice clarification.

SELECTION OF CITATIONS
SEARCH DETAIL
...